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We consider Schr6dinger operators on  12(2~ v) with deterministic aperiodic 
potential and Schr6dinger operators on the /2-space of the set of vertices of 
Penrose tilings and other aperiodic self-similar tilings. The operators on 12(7Z ~') 
fit into the formalism of ergodic random Schr6dinger operators. Hence, their 
Lyapunov exponent, integrated density of states, and spectrum are almost- 
surely constant. We show that they are actually constant: the Lyapunov exponent 
for one-dimensional Schr6dinger operators with potential defined by a primitive 
substitution, the integrated density of states, and the spectrum in arbitrary 
dimension if the system is strictly ergodic. We give examples of strictly ergodic 
Schr6dinger operators that include several kinds of "almost-periodic" operators 
that have been studied in the literature. For Schr6dinger operators on Penrose 
filings we prove that the integrated density of states exists and is independent 
of boundary conditions and the particular Penrose tiling under consideration. 

KEY WORDS: Discrete Schr6dinger operators; Lyapunov exponent; 
integrated density of states; spectrum; Fibonacci sequences; primitive substitu- 
tions; Penrose tilings; self-similar tilings; strict ergodicity; unique ergodicity; 
minimality; aperiodic structures. 

1. I N T R O D U C T I O N  

The aperiodic Schr6dinger  operators  we deal with are Schr6dinger 
operators  on /2 (Zv)  with a determinist ic  aperiodic potent ial  and Schr6dinger 
operators on the /2 - space  of the set of vertices of Penrose tilings or other 

self-similar aperiodic tilings. In  both  cases the Schr6dinger  operator  H is of 
the form 

( H O ) ( x ) =  ~ 0 ( Y ) + V ( x ) 0 ( x )  (1.1) 
(x,y) 
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where the summation extends over the nearest neighbors of x. These 
operators have received a lot of attention recently (for references see 
Sections 6 and 7.3). They are studied because they might describe electronic 
properties(1 3~ of quasicrystals, (4) because they are relevant to quasiperiodic 
phenomena in solid-state physics (see, e.g., ref. 5), and because they are 
mathematically interesting. 

The aperiodic Schr6dinger operators on /2(Zv) fit into the formalism 
of ergodic random Schr6dinger operators (see, e.g., refs. 6-8) in the following 
canonical way. Let g2 denote the closure in a suitable topology of the set 
of all translates of the potential V. The space f2 is a compact metrizable 
topological space that is given its Borel a-algebra ~-. Every co e f2 defines 
a potential 17(6o) by Vn(co):= con. The potential is a random variable on 
the measurable space (f2, ~ )  and one gets a random Schr6dinger operator 
Ho~. Let 2v act on s by shifts Ti defined by (Tico), := co~+~ and on/2(Zv) 
by unitary operators Ui defined by (U~O)n := On+i- The family H~ satisfies 

HT~(o = U*Ho, U, (1.2) 

There is a natural probability measure # on (s ~ )  that is ergodic with 
respect to the shifts Ti. 

For ergodic random Schr6dinger operators, the spectrum, the 
integrated density of states, and (in one dimension) the Lyapunov expo- 
nent exist p-almost surely and are p-almost surely constant (see, e.g., 
refs. 6-8). This paper will show that these quantities actually exist for all co 
and do not depend on it, under the following conditions. 

If the system is strictly ergodic (i.e., uniquely ergodic and minimal; see 
Section 7.1 for definitions), then the integrated density of states and the 
spectrum of Ho~ are independent of co (Propositions 7.3 and 7.4, respec- 
tively). Examples of strictly ergodic Schr6dinger operators are given in 
Section 7.3. They include several kinds of "almost-periodic" Schr6dinger 
operators that have appeared in the literature, and some new ones, too. 
The Lyapunov exponent is not independent of co for arbitrary strictly 
ergodic Schr6dinger operators. However, Proposition 5.1 states that the 
Lyapunov exponent is independent of co if the potential derives from a 
so-called primitive substitution. Examples of sequence derived from primitive 
substitutions are Thue-Morse sequences and Fibonacci sequences. 

Schr6dinger operators on the /2-space of a Penrose tiling do not fit 
into the formalism of ergodic random Schr6dinger operators because 
Penrose tilings are aperiodic. The absence of periodicity is a serious obstacle 
for analytical or rigorous results. As far as we know, Proposition 6.1 is 
the first rigorous result on these models. It states that the integrated density 
of states exists for a large class of Schr6dinger operators on Penrose tilings 
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and is independent of boundary conditions. Moreover, if one considers the 
same (in a sense to be specified later) Schr6dinger operator on a different 
Penrose tiling, then the integrated density of states does not change. (Recall 
that there are uncountably many different Penrose tilings.) The result is of 
interest because it shows that in numerical calculations of the integrated 
density of states the "choice of the initial seed for the lattice, ''(9) which 
amounts to a choice of the Penrose tiling, does not affect the results in the 
thermodynamic limit. The proof of Proposition 6.1 uses the self-similarity 
of the Penrose tilings. It works for Schr6dinger operators on every self- 
similar tiling in every dimension. 

The structure of the paper is as follows. Section 2 provides the 
necessary background on primitive substitutions. Section3 discusses 
Penrose tilings as examples of self-similar aperiodic tilings. Section 4 states 
a theorem on the existence of the spatial mean of subadditive set functions. 
It is used in Section 5 to prove that the Lyapunov exponent is independent 
of the realization of the potential if the potential derives from a primitive 
substitution. In Section 6 the same theorem is applied to prove the 
existence of the integrated density of states for Schr6dinger operators on 
Penrose tilings. Section 7 considers strictly ergodic Schr6dinger operators 
on /2(7/~); Section7.1 contains the definitions, Section7.2 the results. 
Section 7.3 gives three classes of examples of strictly Schr6dinger operators: 
those with potential defined by a primitive substitution, by a "circle map," 
or by a uniformly almost-periodic function. 

2. P R I M I T I V E  S U B S T I T U T I O N S  

Primitive substitutions define two-sided infinite sequences taking 
finitely many values. Often these sequences are aperiodic, but even then 
they have very good homogeneity properties. The orbit closure under the 
shift of such a sequence gives a so-called substitution dynamical system. 
There is an extensive literature on substitution dynamical systems (see 
ref. 10 and references contained therein). This section explains how 
primitive substitutions define two-sided infinite sequences and states some 
properties of these sequences and of substitution dynamical systems. 

Let A be a finite set. It is called an alphabet and its elements are called 
symbols. A finite sequence of symbols is called a word. The set of all words 
is denoted by A*. An example would be A = {0, 1 }; then '0', '01', and '000' 
would be examples of words. A substitution (on A) is a map S: A ~ A*; it 
will be extended to a map A* ~ A *  and A ~ -~A ~ by concatenation, i.e., 
S(ala2...an) :=(Sal)(Saa)...(San). A substitution is called primitive if 
there is an integer k such that for all symbols a the word S~a contains at 
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least one copy of every symbol. An example of a primitive substitution on 
(0, 1} is 

SFO := 01 
(2.1) 

SF1 : = 0  

This substitution defines the so-called Fibonacci sequences. Clearly, SkF 0 = 
S~F-10 k-1 S F 1 for all k. Since SkF 0 starts with k-  S r 0, the substitution SF has 

+ Often, co+ is called the a fixed point in {0, 1 } v. It will be denoted by COF" 
Fibonacci sequence. The fixed point arises from the fact that SFO starts 
with 0. Similarly, if there is a symbol a e A such that Sa starts with the 
symbo ! a, then a defines a fixed point of S on A ~, which will be denoted 
by 09 +. The existence of such a symbol can be assumed withouf loss of 
generality because the alphabet is a finite set. Hence for every b e A there 
will be at least two integers k~>0 and j > 0  such that Skb and se+Jb both 
start with the same symbol, say a. Then SJa starts with a and one can 
consider the substitution S' = S j, which is primitive because S is primitive. 

We have explained how a primitive substitution gives rise to a one- 
sided infinite sequence co +. We shall now use co + to define a set 12 c A z of 
two-sided infinite sequences. It is, however, possible to generate two-sided 
infinite sequences directly by means of the substitution (see, e.g., refs. 11 
and 12). 

Let o3 be any element of A ~ that coincides with co + on the positive 
integers. Define (2 as the elements of A Z that are limit points (in the 
product topology) of Tnch as n + m, i.e., 

12 := {co~A~ ] co= lim Tn, o3 and ni--* oQ} 
i ~ o o  

By definition, s is a closed (and therefore compact) subset of A z that is 
invariant under T := T1. The dynamical system (f2, T) is called the sub- 
stitution dynamical system associated to S. The set ~2 is finite if and only 
if co § is periodic. If f2 is not finite, then it is uncountably infinite. 

The substitution dynamical system (O, T) and the sequences in f2 have 
the following well-known properties (see, e.g., ref. 10). First, the system is 
uniquely ergodic. This means that there is exactly one ergodic invariant 
probability measure on f2. Second, it is minimal, which means that every 
co ~ k2 has the property that its orbit { Tkco }k~ z is dense in 12. Third, every 
word that occurs in some co e f2 occurs infinitely often, and with bounded 
gaps, in every 11 e O. It even occurs with a well-defined frequency, in the 
following sense. If Nw(k, L) is the number of times the word w occurs in t/ 
in the interval {k, k + 1 ..... k + L -  1 }, then 

1 
nw:= l i m  z Nw(k,L ) (2.2) 
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0 I 0 0 1 . 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1  
2r~ 0 1 0 0 1 0 1 0 0 1 0  0 1 0 1 0  0 1 0  

T ~ 0 1 0 0 1 0 1 0 0 1 0 0 
,/.-3 0 1 0 0 1 0 1 0 
"2/-4 0 1 0 0 I 
T 5 0 1 0 
T 6 0 1 

Fig. 1. Compos i t ions  of pa r t  of a F ibonacci  sequence. 

1 0  

1 

exists uniformly in k and is independent of r/. Thus, sequences in 12 are very 
homogeneous. The fact that for every word w the limit in (2.2) exists 
uniformly with respect to k for all r/~12 is equivalent to the unique 
ergodicity. 

Finally, a property that will be very important is the self-similarity 
of the sequences (cf. the next section). For  every co el2 there is a 
uniquely determined sequence {r of so-called compositions. The j th  

J J is an interval composition Y-J consists of pairs {(I{, a l ) } i ~ ,  where Ii 
{li, l~+ 1,...,/i+l - 1} and a{ is a symbol. The dependence of l~ on j is left 
implicit. The intervals I t form a partition of Z. The sequence J~ {ai~i~ ~ is 
itself an element of f~ that has the following relation to the original 
sequence co: 

SJa~ = coticoti+ 1 """ col~+ 1- 

In words: if one applies the substitution j times to a~, one gets the word 
of co that lies in I t. Note that j -o  can be identified with the sequence r 
itself. The construction is illustrated in Fig. 1 for a part of a Fibonacci 
sequence. Elements (I~, a~) and (I~, a~) of J-J  will be called equivalent if 
a{ = a~. In that case the sets I{ and I~ define two occurrences of the word 
SJa~. 

3. PENROSE TILINGS AS EXAMPLES OF SELF-SIMILAR 
TILINGS 

This section gives the information on Penrose tilings that will be 
needed to discuss Schr6dinger operators on Penrose tilings and to state the 
theorem in the next section. In particular, it explains the self-similarity of 
Penrose tilings. There exist many tilings with a self-similarity analogous 
to that of Penrose tilings. ~13~ More detailed information on Penrose tilings 
can be found in refs. 14-17. Penrose tilings have become a standard two- 
dimensional model of quasicrystalline order. 

Figure 2 shows a part of a Penrose tiling. Every tile is a rhomb, and 
there are two kinds of rhombs: fat ones and skinny ones. There are several 
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\ /  
7"  
/--. 

Fig. 2. Part of a Penrose tiling. The dots come from the "matching rules"; see, e.g., ref. 14. 

ways to define Penrose tilings, which can be found in the literature. (14 17) 
Every Penrose tiling is aperiodic: no Penrose tiling will coincide with itself 
after any nonzero translation. There are uncountably many different 
Penrose tilings (two Penrose tilings are different if they cannot be made to 
coincide by a translation and/or rotation). Moreover, Penrose tilings are 
indistinguishable in the sense that every configuration of tiles (every 
"patch") that occurs in one Penrose tiling occurs in every other Penrose 
tiling. Moreover, every patch that occurs in a Penrose tiling occurs with a 
well-defined, strictly positive frequency that is the same for all Penrose 
tilings. The limit of the number of copies/volume exists uniformly with 
respect to the position of the volume. 

Penrose tilings have a self-similarity property that is analogous to the 
self-similarity that was discussed in the previous section. On every Penrose 
tiling one can superimpose another, uniquely defined, Penrose tiling in 
which the edges are a factor ~ = �89 + x/-5) longer (see Fig. 3). This second 
tiling is called the composition of the original one. Note that every pair of 
fat (skinny) rhombs contains the same pattern from the original tiling. 
Since the composition is a Penrose tiling, there exists a (unique) composi- 
tion of the composition, which is called the second composition, and so on. 
Thus, there is a sequence of compositions {YJ}9=~ associated with every 
Penrose tiling Y.  

There are quite a few examples of aperiodic tilings of the plane and of 
space that are self-similar in the way Penrose tilings are self-similar (for 
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J 

Fig. 3. Part of a Penrose tiling (thin lines) and its first composition (thick lines). 

some references see, e.g., p. 171 of ref. 18). We call such tilings self-similar 
tilings. Lunnon and Pleasants (13) have proved that there exist many 
different kinds of aperiodic self-similar tilings in every dimension. Every 
self-similar tiling has its sequence of compositions. 

Note that one can view Z v as the set of vertices of a self-similar tiling" 
a tiling of space by cubes of side one. The first composition is formed by 
taking a v cubes together to form cubes of side a. Tiles in the j t h  composi- 
tion are cubes of side a j .  Here a can be any positive integer. But even for 
a given integer a compositions are not uniquely determined; one can shift 
them. The partitions of 7/associated with primitive substitutions in the pre- 
vious section give a way of viewing Z as the set of vertices of a self-similar 
aperiodic tiling, one in which tiles are intervals of length 1 marked by a 
symbol. One can also view 7/~ as the set of vertices of a self-similar 
aperiodic tiling by marked cubes. As an example, (~s) consider the two- 
dimensional substitution 

1 1 1 0 
0-~ 1 ~  

0 0 0 1 

Iterating the substitution on 0 gives a pattern of O's and l's in the first 
quadrant of 7/2. Its limit points under translations yield aperiodic elements 
of {0, 1 }~2. These can be associated with tilings by marked squares in an 
obvious way and these tilings are self-similar. 

A point on the boundary of a tile belongs to at least one other tile. To 
formulate the theorem in the next section, however, we need to have a 
sequence of partitions associated with the compositions. To obtain a parti- 
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tion from J-J  one only has to decide to which set of the partition every 
boundary point of a tile will belong. ' This can be done in such a way that 
two sets from the partition contain the same pattern of tiles of J -  whenever 
these sets are translates of each other (see p. 173 of ref. 18 for a detailed 
explanation). From now on we shall simply assume that the compositions 
3 --j are these partitions. 

4. THE M E A N  OF S U B A D D I T I V E  SET F U N C T I O N S  

Let A--, FA be a function on the bounded Lebesgue-measurable sub- 
sets of ~ that is negative 

FA <~0 for all A (4.1) 

and subadditive 

FA,,~A<~FA,+FA if A' ~A=(25 (4.2) 

Let ]A[ denote the Lebesgue measure of A. The existence of the mean 
limlAl~o I A I - a F  A is well known (19) for the case that FA is translation 
invariant (or periodic). But in our applications FA will not be translation 
invariant, because it will for instance be proportional to the integrated den- 
sity of states of a Schr6dinger operator on a Penrose tiling. Theorem 4.1 
below gives necessary and sufficient conditions for the existence of the 
mean. The conditions involve the behavior of F~ on the partitions Y-J. 
Before stating the theorem, we first specify the sense in which [AI--* oo and 
define the notion of vertexneighborhood. 

A oo A sequence { n}n=0 of Lebesgue-measurable subsets of Nv tends to 
infinity in the sense of Van Hove if for n--, oo both IAnl ~ ~ and 
[~rAI/lAn[ ~ 0 for all r > 0, where 0rA denotes the set of points of Nv that 
have a distance of at most r to the boundary of An. Note that it is not 
required that AncAn+l ,  nor that the union of the A n equals N~. A 
sequence {An} is called a cubelike sequence if (i) it is a Van Hove sequence 
and (ii) there is a 6 > 0  and a sequence of cubes {K,} such that for all n 
both A, c K ,  and IAnl/IK~l >>.6. Every "Fisher sequence" is a cubelike 
sequence (Lemma 1 in ref. 20). 

A vertexneighborhood of ~--J is the union of all sets of Y-J that meet 
a vertex, in the sense that their intersection with every sphere around the 
vertex is nonempty. In the context of Section 2, a vertexneighborhood of 
Y-J consists of two adjacent sets, i.e., an interval {l~,..., li+ 2 -  1} and the 
symbols a{ and a{+ 1. Two vertexneighborhoods are equivalent if they can 
be mapped onto each other by a translation (in the context of Section 2, 
the symbols should also be the same). 
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The following theorem has been proved in ref. 18. 

Theorem 4.1. Suppose FA satisfies (4.1) and (4.2). If 

1 
lim sup I f v -  Fv, I = 0 (4~.3) 

j~czo V,V, G ~ - j : - ~  
V '=V+x  

where the supremum is taken over all pairs of equivalent sets and 
vertexneighborhoods in Y-J, then there exists an f e  [ - o %  0] such that 

1 
f = lirn ~ [  FA, for every cubelike sequence {A n } (4.4) 

Conversely, i f f  is finite, then (4.4) implies (4.3). 

Condition (4.3) is also equivalent to 

lim sup a-" LFco-Fc,+x[ (4.5) 
a ~ o o  X E ~  v 

where Ca denotes a cube of side a. So FA may fluctuate when A is shifted 
around, as long as the fluctuations grow slower than IAI as IAI becomes 
large. The convergence of I AI-~ F~ will then be uniform with respect to the 
position of A. 

Instead of dividing in (4.4) by the Lebesgue measure of A,, one may 
also divide by the number of lattice points in An, or, in the case of an 
aperiodic self-similar tiling, by the number of vertices in A,. In fact, this is 
what shall be done in the rest of the paper: A will denote a finite subset of 
Y" or a finite set of vertices and IAI its cardinality. The sequence of finite 
subsets of 7/v (finite sets of vertices) contained in the sets in a Van Hove 
sequence/cubelike sequence will itself be called Van Hove sequence/cubelike 
sequence. 

5. THE L Y A P U N O V  E X P O N E N T  

Consider an ergodic random Schr6dinger operator on 12(7/). Every 
solution 0 of the eigenvalue equation Ho~O=E ~ associated to (1.1) 
satisfies 

o 

The matrix A, is called the transfer matrix; recall that Vn(co)= co,,. The 
subadditive ergodic theorem implies that for all E and for/~-almost all co 

7(El := lim --1 log [IAN(co) AN_I(co)...AI(co)I I (5.1) 
N~o~ N 
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exists and is independent of co (see, e.g., Section 9.3 in ref. 6); [[. I[ denotes 
the operator  norm. The quantity 7 is called the Lyapunov exponent. 
Theorem 4.1 can be used to prove a stronger result. 

Proposi t ion  5.1. Let / 2 c A  Z be defined by a primitive substitu- 
tion on a finite set A. Then for every E ~  C there exists a 7 (E)e  N such that 
in (5.1) equality holds for all co ~/2. 

Proof. Let E E C  be arbitrary. Since V n takes finitely many values, 
there is a C > 0  such that IlAn(co)ll ~ c  for all coe# and all ne7/.  For 
co e/2 define a function F~ on the finite subsets A of 7 /by  

F~ := log  [ I  A,(co) - I A I  C 
i e A  

where the product is taken in descending order of i, as in (5.1). The 
function F~' is subadditive, (4.2), and satisfies 

" I A I  C<<.F~<~O for all A 

since IlA,(co)ll >1- 1 for all n and all co. If I and I '  are equivalent elements of 
the j t h  composition Y J  of co, then F / =  F~,. Hence Theorem 4.1 gives the 
existence of an fo~ e [ _ C, 0] such that 

1 
f~o = lim - -  F ~ 

. . . .  IA.I A~ 

for all cubelike sequences {A,}. Since A , = { 1 , 2 , . . . , n }  is a cubelike 
sequence, this proves that the limit in (5.1) exists for every co. 

It  remains to be shown that fo~ does not depend on co. Let 
A , =  {1, 2,..., n}. Clearly A n defines a word w, of length n in co. Let q be 
another element of/2.  Since every word in co also occurs in t/, there is an 
interval A', of 7/ such that the word w, occurs in t/ at A' n. Hence F~176 ---- F~A~ 
for all n. This shows that f~o is independent of co. | 

This result is surprising because it is known not to be true for uniformly 
almost-periodic discrete Schr6dinger operators. Avron and Simon (21~ 
(Remark 3, p. 389) have shown that for the almost-Mathieu equation the 
Lyapunov exponent either does not exist for some elements in the hull or 
is not constant on the hull if the frequency ~ is a Liouville number. The 
reason for this difference in behavior is the fact that a sequence generated 
by a substitution takes finitely many values, whereas a uniformly almost- 
periodic sequence takes values in an interval. If  for a given n two sequences 
defined by a primitive substitution are sufficiently close in the topology of 
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f2, then they will coincide on {1, 2,..., n}; no such property holds for 
uniformly almost-periodic sequences. 

In addition, it is interesting because it simplifies a step in the proof of 
Bellisard etal322) that a Schr6dinger operator with "period-doubling 
potential," which is generated by a primitive substitution, has zero 
Lebesgue measure for all co. To prove this, they consider the Lyapunov 
exponent yo~(E) and the constant 7~(E) to which it is #-a.s. equal by the 
subadditive ergodic theorem and show that the symmetric difference of 
{El 7~(E)= 0} and {E I 7~o(E)= 0} has zero Lebesgue measure (Lemma 8). 
Our result shows that the two sets are equal. Lemma 8 of ref. 22 has also 
been used in ref. 23. 

Proposition 5.1 can be generalized as follows. 

Proposition 5.2. Let (g2, T) be a substitution dynamical system 
and let B be a function on Q taking values in the bounded operators on 
some normed space. Suppose there is a positive integer k such that B(co) 
only depends on {co k,..., cok}- Then 

7 := 2inao~ NlOg lIB(TNco) B( TN lo9) ... B(Tco)H (5.2) 

exists uniformly in co. 

Skotch of  Proof. The proof is analogous to that of Proposition 5.1. 
One only has to replace the compositions ~-J by "marked compositions" 
J/g/. The elements of J/g'J are the same as those in Y-J, but elements I i and 
Ik of ~ J  are equivalent if and only if one has equivalence in YJ  of the pairs 
Ii_ I and Ig 1, Ii and Ik, and I~+1 and Ik+l.  Theorem 4.1 remains valid if 
one replaces r by ~ J  (see ref. 18 for details). The uniformity follows 
from, e.g., (4.5). ] 

Walters (24) has investigated the uniform convergence of (5.2) if T is a 
uniquely ergodic homeomorphism of a compact metrizable space and B(co) 
is an invertible real matrix that depends continuously on co. He has 
constructed an example (Theorem 2.2) showing that the convergence is not 
uniform in general. In addition, he has shown in Theorem 2.1 that the 
convergence is uniform if all the matrix elements [B(co)] 0 are strictly 
positive for all co. Our Proposition 5.1 shows that this condition is not 
necessary. 

6. S C H R O D I N G E R  OPERATORS ON PENROSE TIL INGS 

In this section we prove the existence of the integrated density of states 
for Schr6dinger operators on Penrose tilings. The proof will be given for a 
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large class of bounded self-adjoint operators that contains all the 
Schr6dinger operators that have been studied in the literature. The proof 
works on all self-similar tilings. 

Let L be the set of vertices of a Penrose tiling Y-. A finite set of ver- 
tices will be called a vertexpattern. For  positive r, let the r-environment 
Er(A) of a vertex pa t te rn  A be defined as 

Er(A) := {xeL] dist(x, y)~r  for some yeL}  

where dist(x, y) denotes the Euclidean distance between the points x and 
y; note that A c Er(A). Two vertexpatterns A and A' will be called 
r-equivalent if Er(A) and E,(A') are translates of each other. 

Consider a bounded self-adjoint operator H =  {H(x, Y)}x,y~L on 
12(L). Let HA be its restriction to /2(A): 

(H~O)(x) := 2 ~(x, y) ~(y) 
y e a  

If A is a vertexpattern, then H A is a IA[ x [AI Hermitian matrix. Two 
restrictions HA and H A, can be seen a operators on the same space if A and 
A' are translates of each other. The operator H will be called vertexpattern- 
invariant if there are r, r' > 0 such that (i) H(x, y) = 0 if dist(x, y) > r and 
(ii) H(x,y)=H(x', y')  for every {x', y ' } c L  such that Er,({x',y'})= 
Er,({x, y } ) +  a for some translation a. If H is a vertexpattern-invariant 
operator on 12(L), then there is a vertexpattern-invariant operator H '  on 
the 12-space of the set of vertices of every other Penrose tiling J ' ,  such that 
for all vertexpatterns A c J and A' ~ J '  one has H A = HA, if A and A' are 
translates of each other. In this way, a vertexpattern-invariant operator can 
be regarded as defined on all Penrose tilings. 

Equation (1.1) defines an example of a vertexpattern-invariant 
operator if two vertices are considered as nearest neighbors if they are 
connected by an edge of a ti le and if the potential V(x) is determined by 
the type of vertexneighborhood of x. This is the kind of Schr6dinger 
operator that has been considered in refs. 25 and 26 and, with V(x) - O, in 
refs. 9 and 27-29. The Schr6dinger operator in ref. 30 is also vertexpattern- 
invariant; H(x, y) takes two different values for x r  y and the potential 
H(x, x) is zero. Vertexpattern-invariant Schr6dinger operators on another 
aperiodic self-similar tiling, the octagonal tiling, have been studied in 
refs. 31 and 32. 

Boundary conditions can be introduced as follows. Let the inner 
boundary •-A of a vertexpattern A be the vertexpattern 

~ -A := {x~A [H(x,  y)v~O for some yeL\A}  



Discrete Aperiodic Schr6dinger Operators 1365 

A boundary condition on A is a real function on A that vanishes outside 
0-A.  The restriction of H to /2(A) with boundary condition X is the 
operator H~ defined on/2(A) by 

(HSO)(x) := Y, H(x, y) O(y)+~(x)r 
y ~ A  

Let N~(2) be the number of eigenvalues of H I ,  counting multiplicity, less 
than or equal to 2. If Z ~> )(, then H I  ~> H~' and monotonicity (see, e.g., 
Corollary4.3.3 in ref. 33) implies that N ] ( 2 ) ~ N ~ ( 2 )  for all 2. Since 
0 <~ NXA()O)<~ ]At for every boundary condition )~ and all A, it is possible to 
consider boundary conditions "oo" and " - o e . "  We shall write N 2  and 
N5 ~ for the limit of N]  when all components of Z tend to ov and - ~ ,  
respectively. The limit of ]A]-I NA as ]AI --* oe is known as the integrated 
density of states. 

P r o p o s i t i o n  6.1. The integrated density of states exists for 
every self-adjoint vertexpattern-invariant operator and is independent of 
boundary conditions and the Penrose tiling under consideration: there 
exists a function N(2) such that on every Penrose tiling 

1 
Zn N(2) = n-,~olim ~ - ~  NA,(2 ) for all 2 

for every cubelike sequence {A,} and every sequence of boundary 
conditions Zn, which may be oo or - o e .  

Proof. We shall use Theorem 4.1 to show that the limit exists along 
cubelike sequences on a given Penrose tiling. The fact that every patch 
occurring in one Penrose tiling occurs in every Penrose tiling implies that 
the limit is the same on every Penrose tiling (cf. the end of the proof of 
Proposition 5.1 ). 

By using the "x-bracketing" of ref. 34, it is not difficult to show that 

NZ(2)+N~(2)<<.N~,~A2(2) for all ), if A, n A2 = ~2;~ 

Thus - N  A is a subadditive set function. Since H is vertexpattern- 
invariant, there exists an r ' > 0  such that N A = N ~ ,  if A and A' are 
r'-equivalent. In a Penrose tiling, two fat (skinny) rhombs in ~-J have 
(for j~> 5) the same environment of tiles from 3- up to a distance that 
grows propertional to z/. Therefore N ~  = Nv~ on equivalent tiles and 
vertexneighborhoods of ~--; if j is sufficiently large (on an arbitrary self- 
similar tilings one has this equality for equivalent sets and vertex- 
neighborhoods of a "marked" partition(~8)). Thus Theorem4.1 gives the 
existence of limlA I ~ ~ ]A] -~ NA(,~), for every 2, along cubelike sequences. 

822/72/5-6-33 
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The fact that the limit is independent of the boundary conditions 
follows from the observation that for every vertexpattern A and every pair 
of boundary conditions Z and •' one has 

]N~(R)-N~'(2)I ~< l0 AI for all 2 (6.1) 

To prove this estimate, note that H I  and H~' differ by a Hermitian matrix 
of rank at most r := ]~-A]. If A and B are Hermitian n x n matrices and 
B has rank at most r, then (see, e.g., Theorem 4.3.6 in ref. 33) 

2k(A+B)<~2k+r(A)<<,2k+2r(A+B) for k=l,  2,...,n-2r 

where 21 ~<22~ < -.. ~<2n are the ordered eigenvalues of the matrix (the 
same inequalities hold with A and A + B interchanged). These inequalities 
readily imply (6.1). l 

We conclude this section with some miscellaneous remarks. First, (6.1) 
also shows that periodic boundary conditions do not affect the integrated 
density of states in the thermodynamic limit. Here, "periodic boundary 
conditions" can mean several things. For instance, one might take the ver- 
tices inside a cube, repeat this pattern periodically, and use an adhoc 
definition of H(x, y) for x and y in neighboring cubes. Or one could 
consider a "periodic approximant" to the tiling, if the tiling can also be 
described by the "projection method," as is the case for Penrose tilings and 
the octagonal tilings. Second, it is by no means essential that the operators 
act on the/2-space of the set of vertices. The argument also applies if L is 
the set of points one gets by putting a finite number of "atoms" on every 
tile, provided all fat (skinny) rhombs are decorated in the same way. In 
particular, Proposition 6.1 holds for the Schr6dinger operator on the dual 
lattice of the Penrose tiling discussed in ref. 35. Third, the assumption that 
H(x, y) is of finite range is not essential either; it suffices that it decays fast 
enough as dist(x, y ) ~  oe that the set function NA satisfies (4.3). Finally, 
recall that sequences generated by primitive substitutions have a self- 
similarity property analogous to that of the Penrose tilings. Therefore 
Proposition 6.1 has an analog for one-dimensional Schr6dinger operators 
with potential generated by a primitive substitution. In the next section we 
prove the existence of the integrated density of states and its independence 
of the realization of the potential by the strict ergodicity of the substitution 
dynamical system. 
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7. STRICTLY ERGODIC S C H R O D I N G E R  OPERATORS 

7.1. In t roduct ion and Notat ion 

This section discusses Schr6dinger operators Ho~ on 12(•v) of the form 
(1.1)--and satisfying (1.2)--where Vo,(n)=con and co is an element of a 
space f2 that is compact, and strictly ergodic under translations. Strict 
ergodicity is defined below. The next subsection states and proves the 
results. The last subsection gives examples of strictly ergodic systems and 
discusses the extent to which the results are new. 

Let f2 be a compact metrizable space and let ~ be its Borel a-algebra. 
A ZV-action on f2 is a family of homeomorphisms { Tn } n~ zv on f2 such that 
To is the identity on t2 and T~(Tmco)= Tn+,,co for all n, m E Z  ~ and all 
co e f2. A set A ~ J~ is called invariant if T,A = A for all n e 77 v. A proba- 
bility measure # on (f2, ~ )  is called invariant if #(A) = I.t(T~A) for all A e Y 
and all n e 7/L A measure/~ on (f2, ~ )  is called ergodic if it is an invariant 
probability measure and #(A) is either 0 or 1 for every invariant set A e ~ .  
The orbit Orb(co) of co~t2 is the set {T,,co}~z, .cf2.  If there is only one 
ergodic measure on f2, then f2 (or the probability measure, or the 
Z~-action, or the dynamical system) is called uniquely ergodic, it is called 
minimal if Orb(co) is dense in f2 for every co e 12, and it is called strictly 
ergodic if it is both minimal and uniquely ergodic. Below, let /~ be the 
uniquely ergodic probability measure on f2. 

We shall need the following results. For proofs in dimension one, see, 
e.g., Section 6.5 in ref. 36. It is straightforward to generalize the proofs to 
higher dimensions. 

Proposition 7.1. The following two statements are equivalent: 

(i) f2 is uniquely ergodic. 

(ii) For every continuous function f on f2 

n v ~ f ( T x o g ) = f f d #  (7.1) lim 
n ~  X E f n  

uniformly in co ~ 12, where { C,, } is a sequence of cubes of side n. 

Proposition 7.2. If O is uniquely ergodic, then t2 is minimal if and 
only if # (A) >  0 for every open subset A 0fO. 

In statement (ii) of Proposition 7.1 the sequence { Cn} can be replaced 
by a Van Hove sequence. In what follows f2 will be a closed invariant sub- 
set of E zv, where E is a compact subset of ~, and (Tnco)k :=cok+,- The 
topology of Q is specified in the examples in Section 7.3. 
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7.2. Results 

Let ZL denote the characteristic function of the cube CL of side 2L + 1 
in 7/v centered around the origin. Let EA(co) denote the resolution of the 
identity of Ho~. Denote by 6, the element of 12(Z v) such that (6,)k = 6,k, 
where 6,k is the Kronecker delta. Define a measure dk L on N by 

Adk~ := (2L + 1 )-v tr(EA(co) Zr) 

We shall show that for all co the measures dk'~ converge vaguely as L ~ 
to a measure dk given by 

f f(x) = f (6o, f(H o) 6o) dlx(co) (7.2) 

It is the unique ergodicity that makes the convergence hold for all co e f2; 
for ergodic Schr6dinger operators the convergence holds almost everywhere 
(see, e.g., Theorem 9.7 in ref. 6). The integrated density of states is the 
distribution function of dk. 

Proposi t ion  7.3. If g2 is uniquely ergodic, then dk'~ ~ dk vaguely 
as L -o oo for all co ~ s 

ProoL We have to show that for every bounded continuous function 
of compact support 

li m f i d <Z= f f dk 

for all co el2, where dk is given by (7.2). 
Let f be a bounded continuous function of compact support and 

define a function f on f2 by f(~o)= (6o, f(Ho~)6o). Clearly, f ( T ,  co)= 
(6,, f (H~) 6,) for all n e Z v. If co, ~ co in t'2, then Ho~, --, Ho~ strongly. 
Therefore, f(Ho~~ strongly (see, e.g., Theorem X.7.1 in ref. 37). 
Hence f is a continuous function on f2. 

Now 

f f()Q dk~(2)= (2L + 1) ~ tr(f(Ho~) Zc) 

= ( 2 L + l )  ~ Y' (3~,f(Ho,)c$~) 
n ~  CL 

=(2L+l) 2 
n E  C L 
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As L ~ o o ,  the last expression converges by Proposition7.1 to ~ f d p  
uniformly in co. | 

Proposition 7.4. If ~2 is strictly ergodic, then for all co,g2 the 
spectrum Zo~ of H~o coincides with the topological support of dk. In 
particular, 27o, is independent of co. 

Proof. If )~or there is a nonnegative continuous function of 
compact support such that f (2o)=  1 and f ( 2 ) =  0 for 2 e Zo,. Therefore 
f(H~o) is the zero operator and f (co)~ 0 (the function f is defined in the 
proof of Proposition 7.3). Since ~ f d# = ~ f dk by (7.2), 2 o ~ supp(dk). This 
proves that supp(dk)c Zo~ for all co. 

To prove that Zo, c supp(dk) for all co, we show that 20r supp(dk) 
implies that 2oq~Zo~ for allco. If )~oesupp(dk), there is a continuous 
function f of compact support such that f()~0)= 1 and ~f( ; t )dk(2)=0.  
Then, by (7.2), ~fdl~=O. Since f is nonnegative, f(H~)>~O and hence 
f(co) >~ 0 for all co. The minimality of #2 and the continuity of f imply by 
Proposition 7.2 that f(co) = 0. In particular, f ( T ,  co) = (~ ,  f (H~) fin) = 0 
for all n e 7/~ and all co e s As f(Ho~) >~ O, this implies f(H~o) = 0 for all co. 
Since f is continuous and f ( 2 o ) = l ,  it follows that 2or for all 
cosn. i 

The first paragraph of this proof is identical to the proof of Proposi- 
tion 9.8 in ref. 6; the second differs from it in that it uses Proposition 7.2. 
Note that Propositions 7.3 and 7.4 hold for arbitrary bounded self-adjoint 
operators Ho~ on 12(7/v) that satisfy (1.2) and are strongly continuous in {0. 

7.3. Examples 

Below we describe three classes of strictly ergodic systems: systems 
defined by substitutions, by "circle maps," and by uniformly almost- 
periodic functions. In the first two classes, E is a finite set with the discrete 
metric and s has the product topology. In the last class E is an interval 
and s is equipped with the supremum norm. The examples are followed by 
a discussion of the extent to which Propositions 7.3 and 7.2 are new for 
each class. 

As stated in Section 2, every primitive substitution defines a strictly 
ergodic dynamical system. One-dimensional Schr6dinger operators with 
potential defined by a primitive substitution have been studied in, e.g., 
refs. 38, 22, 39, and 23. But, as explained in Section 3, one can also consider 
higher-dimensional primitive substitutions, and these give strictly ergodic 
dynamical systems, too. The direct products of Fibonacci sequences 
considered in refs. 30 and 40-42 fall into this category. 
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The potential of a one-dimensional Schr6dinger operator is said to be 
defined by a circle map if co, = 1Eo,~)(0 + ne), where 0 + nc~ is considered 
modulo 1, or as an element of the 1-torus T = N / Z ,  and 0 < / ~ < 1 .  
Schr6dinger operators of this kind are discussed in, e.g., refs. 4348 .  
Actually, most papers take c~ =/~. For  e =/~ = �89 - 1 ) the sequence co is 
a Fibonacci sequence. It seems not to have been realized that these 
Schr6dinger operators are strictly ergodic if e is irrational. They even 
remain strictly ergodic if [0,/~) is replaced by a countable union of disjoint 
half-open intervals (see Proposition A.1). One can make strictly ergodic 
systems in which sequences take N values by partitioning [0, 1) into N sets 
that are countable unions of half-open intervals. 

Note that for the minimality it is essential that the intervals are half 
open. If co, = 1 io,=](0 + n~), the sequence contains two consecutive l's if 
0 + kc~ = 0 for some integer k (co~ = cok + ~ = 1 ), but for all other values of 0 
the sequence contains only isolated l's. 

The construction can be extended to arbitrary dimension by replacing 
the circle by a v-torus. The v-torus with Z~-action defined by translations 
cq,..., ev is strictly ergodic if and only if the ei are rationally independent, 
i.e., if klc~ 1 + ... +kvev = 0  has kl . . . . .  k v = 0  as the only solution in the 
integers (this can, e.g., be shown by a straightforward modification of 
the proofs of Theorems 3.1.1 and 3.1.2 in ref. 49). If a half-open interval is 
now taken to be a Cartesian product of intervals [ai, b~), the analog of 
Proposition A.1 is easily seen to hold. 

The last class of examples is provided by uniformly almost-periodic 
functions. A continuous function f :  N v --* N v is called uniformly almost-peri- 
odic if the set of its translates {f(.+s)}=~R, has compact closure in the 
II'[Ioo-topology. A uniformly almost-continuous function has a compact 
range. Hence, if f is a uniformly almost-periodic function and co, = f ( n ) ,  
then the orbit closure Q of co in the II" II ~-topology is I1' II ~-compact. The 
minimality follows from the fact that for every q, q' e g? there are translates 
of co having distance less then e/2 to t/ and q', respectively; the triangle 
inequality then gives that there is a translate of t /having a distance of less 
than e to t/'. It is well known that ~ is uniquely ergodic (see, e.g., 
Section 10.1 in ref. 6). Schr6dinger operators with uniformly almost-periodic 
potential have been studied extensively (for reviews see, e.g., refs. 6-8). 

Sequences defined by primitive substitutions or circle maps are also 
often called almost-periodic or quasiperiodic. It should be noted that they 
are almost-periodic in the sense that every word occurs with bounded 
intervals (ref. 10, p. 71). These sequences are not uniformly almost-periodic. 

The facts that the integrated density of states and the spectrum are 
independent of the realization of the potential are known for many of these 
examples. Both facts are well known for uniformly almost-periodic 
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Schr6dinger operators in arbitrary dimension, but the proof usually depends 
on the inequality Ilgro-Hnll <~ llco-~ll~. Bellisard etal. ~22) observe on 
p. 398 that in one dimension unique ergodicity implies that the integrated 
density of states is independent of co; their argument is different from ours. 
As said before, it seems not to have been noticed that circle maps give 
uniquely ergodic systems for irrational cc It has been shown, however, that 
the spectrum of circle-map Schr6dinger operators with c~ = fi is independent 
of 0 (Lemma 3 in ref. 47). And implicitly the proof of that lemma shows 
that minimality implies that the spectrum is independent of the realization 
of the potential. 

What is new in Propositions 7.3 and 7.4 is that they hold in arbitrary 
dimension and that their abstract formulation permits a unified treatment of 
the three classes of examples. They show explicitly that the integrated density 
of states is constant for circle maps and that the spectrum is constant 
for primitive substitutions. In addition, some of the examples are new. 
Apart from the direct products in refs. 30 and 40M2, higher-dimensional 
substitutions have, as far as we know, not been considered in the literature, 
nor have higher-dimensional circle maps or the circle maps in the general 
form of Proposition A.1. 

A P P E N D I X  

P r o p o s i t i o n  A.1. Consider the torus ~-= [0, 1), an element 0 e ql-, 
an irrational number 7, and the translation x ~ x + cr on 7I-. Let A 1 be a 
countable union of disjoint half-open intervals [-a, b) in T, let ~b be its 
characteristic function, and A o : = T \ A ~ .  Define co~ 1} Z by coon:= 
06(0 + ncQ. Then: 

(a) The closure f2 in {0, 1 } • of the orbit of co o under the shift T is 
independent of 0. 

(b) (f2, T) is strictly ergodic. 

ProoL Let B =  Bo.--Bt 1 be a word of length ! that occurs in coo 
a tk ,  i.e., 0 _ t - 1  cok + j - Bj for 0 ~ j < l. Equivalently, 0 + kcr s 0 j  = o { ~b I(Bj) -- jet } 
= : C. If the intersection of [a~, bl) and [a2, b2) is not empty, then it is of 
the form [a3, b3). Therefore, and since O-~(Bj)=Aj ,  the set C is again a 
countable union of disjoint half-open intervals. It contains an open set 
because it is not empty. Since translation over an irrational number is 
ergodic (even uniquely ergodic; see, e.g., Theorem 3.1.2 in ref. 49), the word 
B occurs infinitely often in e) ~ and also infinitely often in coe' for every 
0' e 71-. This implies (a). 
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To show that (O, T) is uniquely ergodic, note that the characteristic 
functions of words are rl" l] ~o-dense in the set of all continuous functions 
on Q. Hence by Proposition 7.1 it suffices to show that every word occurs 
in (n o with a uniformly defined frequency. So let the word B and the set C 
be as above. Since C is a countable union of intervals, there exist for every 
e > 0  continuous functions f~ and f2 on $ such that fl<<-lc<~f2 and 
~ f 2 - f l  d2<~e, where d2 denotes the normalized Lebesgue measure on T. 
Since translation over ~ is uniquely ergodic, Proposition 7.1 gives that for 
all integers k 

f f l  1 k +,- 1 d2 <<. lim inf E lc(O+j~) 
n ~ oo Jvl j ~ k 

1 k+n-1 f ~<limsup-  ~ lc(O+j~)<~ f2d2 
n ~ o o  n j = k  

Since e is arbitrary, this means that B occurs with a uniform frequency in 
co ~ and this frequency is equal to the Lebesgue measure of C. Since C 
contains an open set, this frequency is strictly positive. Proposition 7.2 now 
gives that (g2, T) is minimal and hence strictly ergodic. This proves (b). | 
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